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Vertebrates are the only animals that produce bone, but the molecular genetic basis
for this evolutionary novelty remains obscure. Here, we synthesize information from
traditional evolutionary and modern molecular genetic studies in order to generate a
working hypothesis on the evolution of the gene regulatory network (GRN) underlying
bone formation. Since transcription factors are often core components of GRNs (i.e.,
kernels), we focus our analyses on Sox9 and Runx2. Our argument centers on
three skeletal tissues that comprise the majority of the vertebrate skeleton: immature
cartilage, mature cartilage, and bone. Immature cartilage is produced during early stages
of cartilage differentiation and can persist into adulthood, whereas mature cartilage
undergoes additional stages of differentiation, including hypertrophy and mineralization.
Functionally, histologically, and embryologically, these three skeletal tissues are very
similar, yet unique, suggesting that one might have evolved from another. Traditional
studies of the fossil record, comparative anatomy and embryology demonstrate clearly
that immature cartilage evolved before mature cartilage or bone. Modern molecular
approaches show that the GRNs regulating differentiation of these three skeletal cell
fates are similar, yet unique, just like the functional and histological features of the
tissues themselves. Intriguingly, the Sox9 GRN driving cartilage formation appears to be
dominant to the Runx2 GRN of bone. Emphasizing an embryological and evolutionary
transcriptomic view, we hypothesize that the Runx2 GRN underlying bone formation
was co-opted from mature cartilage. We discuss how modern molecular genetic
experiments, such as comparative transcriptomics, can test this hypothesis directly,
meanwhile permitting levels of constraint and adaptation to be evaluated quantitatively.
Therefore, comparative transcriptomics may revolutionize understanding of not only the
clade-specific evolution of skeletal cells, but also the generation of evolutionary novelties,
providing a modern paradigm for the evolutionary process.

Keywords: EvoDevo, comparative transcriptomics, Sox9, Runx2, bone, cartilage, GRN

Introduction: Cartilage and Bone might Share an Evolutionary
History

Most of evolutionary theory has focussed on studies of morphological change (morphogenesis)
among taxa, but the formation of tissue types (histogenesis) also can evolve in clade-specific
manners. Therefore, we focus our attentions on a relatively understudied subject of evolutionary
research: the evolution of histogenesis. A classic problem in evolutionary theory is to explain
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novelties, or traits with no clear ancestral antecedent (Shubin,
2002; Moczek, 2008; Wagner and Lynch, 2010). For example,
vertebrates are the only animals that produce bone, but
so far, the molecular genetic basis for this evolutionary
novelty remains obscure. Here, we synthesize information from
traditional evolutionary and modern molecular studies in order
to generate a working hypothesis on the evolution of the genetic
system underlying bone formation. Many studies argue that
bone evolved from dentine (Kawasaki et al., 2004; Wagner
and Aspenberg, 2011). However, using molecular genetic and
embryological arguments that favor gradualism over saltationism
(Gould, 2002), we hypothesize that bone (and perhaps all
mineralizing tissues, such as dentine) appeared during evolution
by co-opting a gene regulatory network (GRN) that was under
prior natural selection to mineralize cartilage. In order to present
an argument for skeletal tissue development and evolution over
the past 500 million years, we make some generalizations that
may trouble some readers, of whom we ask their indulgence,
hoping that such generalizations help to reveal broader trends
during the evolution of skeletal tissues.

An introductory look at the similarities and differences among
cartilage and bone suggests that the underlying GRNs may be
related. Cartilage and bone are specialized connective tissues
that provide form and structural support to the body, protect
vital organs, and play a crucial role in locomotion through
muscle attachments (Gray and Williams, 1989). Despite these
similarities, they also have distinct functions (Figure 1). Cartilage
typically offers a flexible structure to support soft tissues and also
to serve as a load-bearing surface between bones. On the other
hand, bone is a hard, rigid structure that protects vital organs and
acts as a storage site for minerals, such as calcium and phosphorus
(Smith and Hall, 1990; Volkmann and Baluska, 2006). Also unlike
cartilage, which has almost no capacity for regeneration, bone is
a highly dynamic structure that undergoes constant remodeling,
preserving bone strength and regulating calcium homeostasis
(Datta et al., 2008). Perhaps related to regenerative capacity,
these tissues differ in vascularity. Bone is highly vascularized, but
cartilage typically is avascular. However, important exceptions
to cartilage vascularization occur. Mature cartilage in tetrapods
often is invaded by vasculature as it degrades, creating the
marrow cavity (Johnson, 1980; Roach, 1997; Stricker et al., 2002;
Ortega et al., 2004; Moriishi et al., 2005), and even immature
cartilage is highly vascularized near articulating surfaces in some
avian and mammalian species (Ytrehus et al., 2004; Blumer et al.,
2005). When cartilage extracellular matrix (ECM) undergoes
mineralization, its functions change. In some vertebrates, such
as sharks, mineralized cartilage can serve as the major rigid
structural support for the body, meanwhile providing a mineral
reservoir (Daniel, 1934; Kemp and Westrin, 1979; Eames et al.,
2007). In most extant vertebrates, however, mineralized cartilage
mainly serves as a scaffold during endochondral ossification,
outlined below.

During embryonic development, cartilage and bone formation
share many features (Figure 1). Both cartilage and bone
are differentiated from common mesenchymal (osteochondral)
progenitor cells (Fang and Hall, 1997; Day et al., 2005; Hill
et al., 2005). Both cartilage and bone initiate overt differentiation

by aggregating mesenchymal cells into condensations, which
can go on directly to secrete cartilage- or bone-specific matrix
(Hall and Miyake, 1995, 2000; Kronenberg, 2003; Day et al.,
2005). However, a unique feature of bone formation is that,
in addition to differentiating directly from an osteogenic
condensation (intramembranous ossification), bone also forms
on a pre-existing cartilage template (endochondral ossification).
Endochondral ossification actually involves the formation of
the three skeletal tissues that comprise the majority of the
extant vertebrate skeleton: immature cartilage, mature cartilage
and bone (Eames et al., 2003, 2004; Eames and Helms,
2004). Some cartilage remains throughout development at the
growth plates and throughout life at articular surfaces (we
term this immature cartilage). Most of the cartilage produced
during endochondral ossification, however, undergoes a series of
changes, termedmaturation (thus the terms immature vs. mature
cartilage). In most vertebrates, cartilage maturation involves
cell hypertrophy, matrix mineralization, cell death, and matrix
degradation (Leboy et al., 1988; Hatori et al., 1995; Takeda et al.,
2001; Miura et al., 2008). Although exceptions exist (Thorogood,
1988; Hirasawa and Kuratani, 2015), endochondral ossification
typically gives rise to the bones of the endoskeleton, such as
the chondrocranium or limb skeleton, whereas intramembranous
ossification produces the exoskeleton, such as lateral plates in
teleosts or the calvarium (Smith and Hall, 1990).

Histologically, immature cartilage, mature cartilage, and bone
are very similar, yet each also has some unique features (Figure 1).
All three skeletal tissues are comprised of cells embedded in an
ECM that is rich in collagens and proteoglycans (Hardingham,
1981; Eames et al., 2003, 2004; Eames and Helms, 2004;
Gentili and Cancedda, 2009). Immature cartilage is formed by
chondrocytes that deposit a network of loose collagen fibers
and a rich substance of proteoglycans, whereas chondrocytes of
mature cartilage alter the immature cartilage ECM by decreasing
its proteoglycan sulfation and mineralizing it (Lohmander and
Hjerpe, 1975; Buckwalter et al., 1987; Bayliss et al., 1999). The
requirement of proteoglycan degradation for mature cartilage
ECMmineralization is debated (Hirschman and Dziewiatkowski,
1966; Granda and Posner, 1971; Poole et al., 1982; Campo and
Romano, 1986). Bone is formed by osteoblasts that produce an
ECM of tightly wound and highly cross-linked collagen fibers,
and bone ECM has lower levels of proteoglycans than cartilage
(Gentili and Cancedda, 2009). As a result of these collagen
and proteoglycan concentrations, these three skeletal tissues
have overlapping and unique histological staining patterns.
High concentrations of sulfated proteoglycans cause immature
cartilage to stain with Alcian blue and Safranin O (by comparison,
mature cartilage and bone bind these dyes with decreasing
intensity, respectively). The tightly wound collagen fibers of bone
stain with Direct red and Aniline blue (by comparison, loose
collagen fibers of cartilage matrix bind these dyes with lower
intensity; Villanueva et al., 1983; Hall, 1986; Eames and Helms,
2004; Eames et al., 2004, 2007). Alizarin red can stain mineralized
tissues of mature cartilage and bone (Hogg, 1982; Kirsch et al.,
1997; Eames and Helms, 2004; Eames et al., 2007).

Immature cartilage, mature cartilage, and bone have
overlapping, but distinct, gene and protein expression profiles
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FIGURE 1 | Similarities and differences among immature cartilage, mature cartilage, and bone suggest that these three skeletal tissues share an
evolutionary history.

(Figure 1). All these skeletal tissues express Collagen 11 and the
proteoglycans Biglycan and Decorin (Li et al., 1998; Knudson
and Knudson, 2001; Rees et al., 2001; Roughley, 2006). Immature
cartilage expresses high levels of Collagens 2 and 9, as well as
the proteoglycans Aggrecan, Fibromodulin, and Epiphycan,
which distribute growth factors and provide swelling pressure
due to water attraction (Yanagishita, 1993; Lefebvre et al., 1997;
Lefebvre and de Crombrugghe, 1998; Watanabe et al., 1998;
Liu et al., 2000). Mature cartilage has reduced expression of
these same collagens and proteoglycans, while also expressing
high levels of Collagen 10 (Orth et al., 1996; Eames et al., 2004;
Talwar et al., 2006). In contrast to both types of cartilage, bone
expresses high levels of Collagen 1 (Yasui et al., 1984; Kream
et al., 1995). Interestingly (and central to the argument of this
review), both mature cartilage and bone share expression of genes
not expressed in immature cartilage, including Sp7 (formerly
called Osterix), Matrix metallopeptidase 13 and Indian hedgehog
(Vortkamp et al., 1996; Inada et al., 1999; Neuhold et al., 2001;
Zaragoza et al., 2006; Abzhanov et al., 2007; Mak et al., 2008;
Huycke et al., 2012; Nishimura et al., 2012; Weng and Su, 2013).
In fact, very few genes expressed in bone are not expressed in
mature cartilage, and this list of genes decreases further when
comparisons among mature cartilage and bone are carried out in

actinopterygians (Eames et al., 2012). Multiple genes associated
with matrix mineralization are expressed in both mature cartilage
and bone, such as Alkaline phosphatase, liver/bone/kidney (Alpl,
formerly called Tissue-nonspecific alkaline phosphatase), Secreted
phosphoprotein 1 (Spp1, formerly called Osteopontin or Bone
sialoprotein), Secreted protein, acidic, cysteine-rich (Sparc,
formerly called Osteonectin), and Bone gamma-carboxyglutamate
protein (Bglap, formerly called Osteocalcin; Termine et al., 1981;
Pacifici et al., 1990; Chen et al., 1991; Bonucci et al., 1992; McKee
et al., 1992; Mundlos et al., 1992; Nakase et al., 1994; Roach, 1999;
Sasaki et al., 2000).

Currently, the evolutionary relationship among skeletal
tissues is unclear, but the similarities highlighted above suggest
that immature cartilage, mature cartilage, and bone share an
evolutionary history. From a molecular genetic perspective, these
observations lead to the hypothesis that the GRNs governing
the formation of these three skeletal tissues (in particular,
the differentiation of three skeletal cell types) also share an
evolutionary history. Indeed, the many varieties of skeletal
tissues intermediate between cartilage and bone observed in
extant and fossil vertebrates may owe their existence to this
shared history (Benjamin, 1990; Benjamin and Ralphs, 1991;
Benjamin et al., 1992; Mizoguchi et al., 1997; Hall, 2005; Witten
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et al., 2010). In this review, we explore this hypothesis using
traditional evolutionary and modern molecular genetic studies.
We are not focussing on the exact anatomical location of a
tissue, given that once the GRN regulating formation of that
skeletal tissue is established in the genome, any cell in the body
can co-opt its expression. Traditional studies have provided
insight into the evolutionary relationship among skeletal tissues,
since they demonstrate that immature cartilage originated first
during phylogeny (Mallatt and Chen, 2003; Rychel et al., 2006).
Interestingly, modern molecular genetic studies reveal that two
GRNs dictate the formation of these three skeletal tissues (Bi et al.,
1999; Inada et al., 1999; Eames et al., 2004; Hattori et al., 2010;
Leung et al., 2011), and also that the GRN underlying cartilage
formation is dominant to that of bone (Eames et al., 2004; Zhou
et al., 2006). We expand upon this finding using an argument
based on the relative parsimony of gradualism versus saltationism
to hypothesize that bone evolved from a cartilage maturation
program. In closing, we discuss how comparative transcriptomics
will enhance dramatically our ability to test hypotheses on the
evolution of the GRNs underlying cartilage and bone formation.

GRN Underlying Immature Cartilage
Formation Evolved First

Traditional studies, such as the fossil record, comparative
anatomy, and embryology, demonstrate that the first skeletal
tissue to evolve was immature cartilage (Figure 2). The fossil
record reveals a great diversity of mineralized tissues about 500
million years ago (Mya; Janvier, 1996, 2015; Donoghue and
Sansom, 2002; Donoghue et al., 2006), suggesting that GRNs
of skeletal histogenesis were undergoing an adaptive radiation.
So which skeletal tissue appeared first in the fossil record? This
question is complicated by the facts that currently discovered
fossils may represent a biased fraction of ancestral tissues,
and that non-mineralized, lightly mineralized, or transiently
mineralized tissues likely are not preserved well in the fossil
record. Despite these limitations, however, the oldest skeletal
tissue in the fossil record is unmineralized cartilage in the
chordate fossil Haikouella from 530 Mya (Figure 2A; Mallatt
and Chen, 2003). Many specimens preserving soft tissues of this
incredibly important fossil have been found, but they appear to
be represented only in a small region of the Yunnan province in
China (Chen et al., 1999), reflecting potential bias in the fossil
record.

Bone and mature cartilage appeared much later than
immature cartilage in the fossil record (Figure 2A). Conodonts, a
group of agnathans (jawless vertebrate fish), are the earliest (∼515
Mya) known fossils with a mineralized skeleton, characterized
by pharyngeal tooth-like elements comprised of tissues that were
bone-like, enamel-like, and mineralized cartilage-like (Sansom
et al., 1992). However, subsequent analyses of conodont fossils
refuted the conclusion that bone or mineralized cartilage was
present in these primitive jawless fish, instead attributing the first
appearance of bone in the fossil record to the exoskeleton of
pteraspidormorphi (∼480 Mya), a group of armored agnathans
(Janvier, 1996; Donoghue, 1998; Donoghue et al., 2006).

Interestingly, some pteraspidomorph species (e.g., eriptychiids
and arandaspids) and other, primitive fossil fish show traces
of both mineralized cartilage and bone in their endoskeleton
(Janvier, 1996, 1997; Zhang et al., 2009). Also, fossils of the
ancestral vertebrate Palaeospondylus gunni (∼385 Mya) reveal
an entire adult skeleton comprised of hypertrophic, mineralized
cartilage, while bone is completely absent (Johanson et al., 2010).
Despite these findings, the current fossil record generally suggests
that bone preceded mineralized cartilage (Smith and Hall, 1990;
Janvier, 1997; Donoghue et al., 2006), although the molecular
genetic and embryological arguments of this review call into
question the accuracy of this conclusion. What is clear from the
fossil record is that unmineralized cartilage was the first skeletal
tissue to appear leading to the evolution of vertebrates (Northcutt
and Gans, 1983; Smith and Hall, 1990).

Comparative anatomy also supports the notion that immature
cartilage was the first skeletal tissue to evolve, because immature
cartilage is distributed in a broader range of taxonomic lineages
than mature cartilage or bone (Figure 2B). Immature cartilage
appears in both vertebrate and non-vertebrate species, whereas
mature cartilage and bone are shared, derived traits of vertebrates
only (Cole and Hall, 2004, 2009; Rychel et al., 2006). In a seminal
study by Cole and Hall (2004), cartilage was demonstrated
in a variety of taxonomically distinct invertebrates, such as
polychaetes, arthropods, and molluscs. Reflecting the different
evolutionary histories of immature andmature cartilage, cartilage
in any invertebrate lineage, and also in extant agnathans, is
unmineralized (Cole and Hall, 2004; Hall, 2005). The finding
that lamprey cartilage can mineralize in vitro suggests that early
agnathans may have possessed mineralized cartilage and these
mineralization programs were repressed in cyclostomes (Langille
and Hall, 1993).

The taxonomic distribution of cartilage suggests that the
ancestor of vertebrates, cephalochordates, and hemichordates
had an ability tomake immature cartilage (Figure 2B). In fact, the
deuterostome ancestor was proposed to be a benthic worm with
cartilaginous gill slits (Rychel et al., 2006). Homology between
invertebrate and vertebrate cartilages is supported by biochemical
and histological analyses, which demonstrate high amounts of
fibrous proteins and mucopolysaccharides (Cole and Hall, 2004;
Cole, 2011). In fact, recent studies have shown that the cirri in
amphioxus share many histological and molecular features with
vertebrate immature cartilage (Kaneto and Wada, 2011; Jandzik
et al., 2015). However, homology between deuterostome and
protostome cartilage is still uncertain and must be confirmed
by modern molecular analyses, including examination of gene
expression patterns, GRN architectures, and GRN regulation.
The ECM of hemichordate skeletal tissues may show features
of both cartilage and bone (Cole and Hall, 2004), supporting
the notion that these two tissues share an evolutionary history.
Mineralized cartilage and bone, however, are only found in extant
gnathostomes (Figure 2). These comparative anatomy analyses
suggest that immature cartilage evolved before mature cartilage
and bone.

Final support for the idea that cartilage arose earlier
in evolution than mature cartilage and bone comes from
comparative embryology. While the Biogenetic Law of Ernst
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FIGURE 2 | Clues to the evolutionary relationship between the chondrocyte and osteoblast emerge from analyses of the fossil record and
comparative anatomy. (A) Appearance of immature cartilage, mature cartilage, and bone from available fossil record. These data indicate clearly that immature
cartilage appeared first, then mature cartilage and bone. By extension, the chondrocyte preceded the osteoblast during evolution. (B) Extant taxa with at least one
species containing cartilage or cartilage-like tissues, which are non-mineralized outside of vertebrates. These data suggest that a GRN driving differentiation of an
immature chondrocyte evolved first, and then became established in the genome of chordates (along with the notochord, a cartilage-like tissue). Subsequently, this
GRN was modified by another GRN that drove differentiation of a mature chondrocyte (and osteoblast) within vertebrates. Branch lengths in trees are arbitrary;
dashed lines indicate extinct taxa.

Haeckel definitely has its theoretical problems (Haeckel, 1866), a
general correlation (recapitulation) between the timing of events
during ontogeny with events during phylogeny is undeniable.
Indeed, many early evolutionary biologists assumed this to be
true (Gould, 2002). In this context, it is interesting to note
that immature cartilage is the first skeletal tissue to undergo
histogenesis during embryonic development, while cartilage
maturation and bone formation are later events. The relative
timing of cartilage maturation to bone formation, on the other
hand, appears to vary among vertebrate taxa (Mori-Akiyama
et al., 2003; Eames et al., 2004, 2012; Moriishi et al., 2005). While
such relationships between the timing of developmental events
have been argued to reflect simply the increasing complexity
of ontogeny during phylogeny (Wallace, 1997), we believe that
this issue, which has been debated for 100s of years, remains
unresolved.

To sum up traditional studies of the fossil record, comparative
anatomy, and embryology, the ability to make immature cartilage
predates the ability to make mature cartilage or bone during

evolution. Therefore, from a molecular genetic perspective, the
GRN governing chondrocyte differentiation clearly appeared
prior to that of the osteoblast. However, traditional approaches
are still unclear whether mature cartilage or bone appeared
next during evolution. With hopes that modern molecular and
embryological analyses can shed light into the evolutionary
origins of the vertebrate skeleton, we next discuss how the GRNs
underlying the formation of immature cartilage, mature cartilage,
and bone are organized.

Sox9 GRN is Dominant to the Runx2 GRN

Skeletal histogenesis is governed by complex sets of genes, largely
controlled by central transcription factors that are responsible
for determining cell fate decisions (Eames et al., 2003, 2004;
Kronenberg, 2003; Karsenty et al., 2009). Molecular genetic
experiments demonstrate that the transcription factors Sox9 and
Runx2 are the “master regulatory genes” of skeletal histogenesis.
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Sox9 and Runx2 expression patterns during mesenchymal
condensation predict whether osteochondroprogenitor cells
differentiate into immature cartilage, mature cartilage, or bone
(Eames and Helms, 2004; Eames et al., 2004). Loss of Sox9
function abrogated immature and mature cartilage formation (Bi
et al., 1999; Mori-Akiyama et al., 2003), whereas Runx2 loss of
function blocked mature cartilage and bone formation (Hoshi
et al., 1999; Inada et al., 1999; Kim et al., 1999; Enomoto et al.,
2000). In gain-of-function experiments, Sox9 mis-expression
induced ectopic cartilage formation, whereas Runx2 mis-
expression induced ectopic mature cartilage and bone formation
(Eames et al., 2004). These and other experiments show clearly
that a Sox9GRN regulates immature cartilage formation, a Runx2
GRN drives bone formation, and a combination of Sox9 and
Runx2 GRNs produce mature cartilage (Figure 3). We emphasize
the relevance of these transcription factors to the evolution of
GRNs underlying skeletal histogenesis, since conserved, core
components of GRNs (i.e., kernels) are often transcription factors
(Levine and Davidson, 2005; Davidson and Erwin, 2006).

Expression studies of skeletal tissues in a range of organisms
suggest an ancestral interaction between Sox and Runx GRNs.
Runx2, along with its related family members, Runx1 and 3,
derive from gnathostome duplications of an ancestral Runx,
while agnathan Runx genes may have undergone an independent
duplication (Meulemans and Bronner-Fraser, 2007; Hecht et al.,
2008; Cattell et al., 2011; Kaneto and Wada, 2011; Nah et al.,
2014). Sox9, along with its related family members, Sox8 and 10,

derive from duplications to the ancestral SoxE, while agnathan
SoxE genes may have undergone an independent duplication
(Meulemans and Bronner-Fraser, 2007; Ohtani et al., 2008; Yu
et al., 2008; Cattell et al., 2011; Uy et al., 2012; Jandzik et al., 2015).
Runx and SoxE orthologs are expressed in cartilage of amphioxus,
lamprey, and hagfish, suggesting that the gene ancestral to Runx2
primitively functioned with the gene ancestral to Sox9 in early
cartilage formation (Hecht et al., 2008; Wada, 2010; Kaneto
and Wada, 2011). Notably, these animals do not have bone,
and they do not mineralize their skeletons. Interestingly, the
amphioxus cirral skeleton shows features of both cartilage and
bone, suggesting that this ancient skeletonmight have diverged to
form cellular cartilage and bone of vertebrates (Kaneto andWada,
2011). We argue that evaluating the interactions between Sox9
and Runx2 GRNs leads to a novel hypothesis for the evolution of
bone.

Many studies in mammals and chick demonstrate that the
Sox9 GRN is at least partially dominant to the Runx2 GRN.
First, co-expression of Sox9 and Runx2 typically causes cartilage
formation, not bone (Eames andHelms, 2004; Eames et al., 2004).
Second, ectopic expression of Sox9 in Runx2-expressing cells
of developing bone (achieved either normally during secondary
cartilage formation or experimentally using Sox9mis-expression)
diverts the cells to make cartilage, whereas ectopic Runx2
expression in Sox9-expressing cells of developing cartilage does
not divert them to make bone (Eames et al., 2004). Third, Sox9
expression needs to be down-regulated in order for the full

FIGURE 3 | During endochondral ossification, immature cartilage, mature cartilage, and bone differentiate under the control of Sox9 and Runx2
GRNs. Chondrocytes of immature cartilage, termed resting and proliferative chondrocytes during endochondral ossification, express high levels of genes in the Sox9
GRN. Genes known to be under direct transcriptional control of Sox9 or Runx2 are highlighted in red or green text, respectively. Chondrocytes of mature cartilage,
termed prehypertrophic and hypertrophic chondrocytes during endochondral ossification, express low levels of genes in the Sox9 GRN and also genes in the Runx2
GRN. Osteoblasts in perichondral and endochondral bone during endochondral ossification express genes in the Runx2 GRN. ∗Col1 is one of the only genes
expressed in osteoblasts that is not expressed in mature chondrocytes; Col10 expression in osteoblasts is high only in some vertebrates. Col11, Decorin, and
Biglycan are expressed in all three of these skeletal cell types. Similar gene expression patterns are seen in immature cartilage, mature cartilage, and bone
developing in the articular surface (not shown).
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Runx2-dependent cartilage maturation program to be expressed
(Akiyama et al., 2002; Eames et al., 2004). Fourth, Sox9 over-
expression can inhibit Runx2 expression (Eames et al., 2004).
Finally, and most conclusively, Sox9 directly binds to Runx2,
inhibits its transcriptional activity, and increases ubiquitin-
mediated degradation of Runx2 (Zhou et al., 2006; Cheng and
Genever, 2010).

Given evidence that the Sox9 GRN can dominate the Runx2
GRN, the formation of mature cartilage during endochondral
ossification, which requires both Sox9 and Runx2, must be
regulated exquisitely (Figure 3). During early stages, both Sox9
and Runx2 are co-expressed in mesenchymal condensations
(Akiyama et al., 2002; Eames and Helms, 2004; Eames et al., 2004;
Zhou et al., 2006), so Sox9 must exert a dominant inhibitory
effect over Runx2 in order to produce immature cartilage. Later,
Sox9 is down-regulated and Runx2 activity increases, triggering
cartilage maturation (Eames et al., 2004; Yoshida et al., 2004;
Hattori et al., 2010). In fact, Sox9 down-regulation is a crucial step
for mature cartilage formation (Hattori et al., 2010). Despite this
down-regulation, a role for Sox9 in very late stages of cartilage
maturation also has been revealed (Ikegami et al., 2011; Dy et al.,
2012). One study even suggests that Runx2 can inhibit Sox9
activity (Cheng and Genever, 2010), illustrating that complex
feedback mechanisms are in place to achieve the appropriate
relative levels of Sox9 and Runx2 activity. In summary, the
preponderance of published literature on molecular genetics
demonstrates that Sox9 has dominant effects over Runx2, and
we extend this conclusion to generate a new hypothesis on the
evolution of bone.

Bone Evolved from Mature Cartilage

Combining evidence from traditional and modern studies,
we hypothesize that the GRN underlying bone formation
evolved from a GRN underlying mature cartilage formation
(Figure 4). Functional, histological, embryological, and
molecular similarities among immature cartilage, mature
cartilage, and bone suggest that these tissues may share an
evolutionary history (Figure 1). The fossil record, comparative
anatomy, and embryology demonstrate that immature cartilage
evolved first (Figure 2). When combined with molecular genetic
data (Figure 3), this means that the first evolved skeletal GRN
was dominated by the gene ancestral to Sox9, driving immature
cartilage formation. This GRN likely involved genes ancestral
to Runx2 in early phylogenetic (and ontogenetic) stages. In
gnathostomes, a Runx2 GRN drives formation of both mature
cartilage and bone (Figure 3), but how did this novel GRN evolve
to produce these novel skeletal tissues?

We propose that immature cartilage provided a structural and
molecular “buffer” for the gradual development of this novel,
Runx2 GRN. The structural buffering effect refers to the fact that
immature cartilage already had a functional role as a skeletal
tissue, allowing more freedom for the evolving Runx2 GRN to
develop new functions that simply modify a pre-existing skeletal
tissue in a gradual, step-wise fashion. The molecular buffering
effect refers to the partial dominance of the Sox9 GRN, which

might have shielded to some extent the evolving Runx2 GRN
from natural selection. This concept recalls the principle of “weak
linkage,” which contributes to evolvability by reducing the cost of
generating variation (Kirschner and Gerhart, 1998; Gerhart and
Kirschner, 2007).

We argue that these putative buffering effects provide a
more parsimonious account for the gradual evolution of bone
from mature cartilage than the alternative, which depends upon
de novo establishment of bone in a more saltationist fashion
(Figure 4). If bone had evolved before mature cartilage, then
the Runx2 GRN would have been under much stronger natural
selection than if it had been buffered by immature cartilage.
Arguments that bone evolved from dentine suffer from the same
limitations: how did dentine and its GRN appear? A new GRN
appearing simultaneously with a completely new skeletal tissue,
while possible, seems a less likely evolutionary scenario than the
gradual establishment of the Runx2 GRN during evolution of
mature cartilage. Assembling a GRN driving bone formation de
novo appears to depend upon saltationist genetic mechanisms,
such as large-scale genomic changes or small genetic effects
acting early in development. Regarding the latter possibility,
chondrocytes and osteoblasts are known to share a relatively
late embryonic progenitor (Day et al., 2005). Therefore, the
former, “macromutational” saltationist mechanism, favored by
Goldschmidt (Goldschmidt, 1940), would have to have operated
in the de novo appearance of the osteoblast. Even saltationists
granted that gradualism is the more common evolutionary
mechanism (Gould, 2002). Therefore, based on the relative
parsimony and abundance of gradualism versus saltationism,
we favor a model in which the Runx2 GRN evolved within
immature cartilage to produce mature cartilage, and then a

FIGURE 4 | Differing models for the appearance of the GRN driving
osteoblast formation. (A) In this scenario, the osteoblast (and the Runx2
GRN that drives its formation) appeared de novo, independent of the
chondrocyte. This model is consistent with saltational evolution, in which
large-scale genomic changes may facilitate the evolution of novelty over short
periods of geologic time. (B) In an alternative scenario, the osteoblast
appeared after a series of step-wise additions to the mature chondrocyte (and
thus the Runx2 GRN that drives its formation). After establishment of the
Runx2 GRN in mature chondrocytes, the osteoblast appeared when another
population of cells co-opted the Runx2 GRN. This model is consistent with
gradual evolution, in which a series of small changes over geologic time may
facilitate the evolution of novelty. The size of the circles and polygons represent
relative levels of up- or down-regulation of genes in the respective GRNs (see
text for discussion of interactions between Sox9 and Runx2 GRNs).
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different mesenchymal (non-chondrogenic) cell population co-
opted this GRN, producing the world’s first example of bone
formation (Figure 4B).

The hypothesis that bone evolved from mature cartilage also
is consistent with a variety of other observations on skeletal
tissues (Fisher and Franz-Odendaal, 2012). During evolution,
the features of mature cartilage seen in various vertebrate
taxa did not appear at the same time (Hall, 1975; Smith and
Hall, 1990). Hypertrophy and mineralization occurred first,
followed by cartilage matrix degradation, replacement by fat
and endochondral bone deposition, and finally, invasion by
the vasculature (in tetrapods). These findings suggest that
cartilage maturation is a highly evolvable process. Also, the
progression from immature cartilage to mature cartilage to bone
during evolution is mimicked during endochondral ossification.
Recently, cell lineage analyses suggest that some cells that express
immature cartilage genes go on to express mature cartilage genes,
and finally they express bone genes, effectively transitioning
from an immature chondrocyte to a mature chondrocyte to an
osteoblast (Hammond and Schulte-Merker, 2009; Zhou et al.,
2014; Park et al., 2015). Finally, gene expression patterns appear
to overlap much more when comparing mature cartilage to bone
in actinopterygians, such as teleosts, than in sarcopterygians, such
as tetrapods (Eames et al., 2012). This may reflect differential
retention of molecular signatures of the evolutionary history
between mature cartilage and bone in earlier diverging versus
later diverging vertebrates.

Comparative Transcriptomics: A Novel
Approach to Solve Evo-Devo Issues

Identification of homologous tissue types among different
taxonomic lineages using histology and cell morphology has
enabled evolutionary studies of histogenesis, but modern
molecular techniques will expand dramatically this field.
Traditionally, comparative anatomy established homologies at
the levels of organs, tissues, and cells. Homology among cartilage-
like tissues can be relatively clear for closely related species, but
can prove more difficult when comparing distant clades, where
clade-specific differences can obscure homology. For example,
histological features, such as cellularity of a tissue, may confuse
homology designation; cartilage is cellular in vertebrates, but is
acellular in hemichordates (Smith et al., 2003; Cole and Hall,
2004; Rychel et al., 2006). In addition, three types of agnathan
cartilage have been distinguished by histology: hard cartilage,
soft cartilage, and mucocartilage (Zhang and Cohn, 2006; Zhang
et al., 2009; Cattell et al., 2011). Which of these would be
homologous to hyaline cartilage of gnathostomes, or are they
all? Modern evolutionary thinking overlooks such superficial
histological differences, emphasizing instead the importance of
tracking changes to the underlying molecular genetic factors
during trait evolution.

Evolutionary studies of skeletal cells will benefit from
transcriptomic techniques, such as RNAseq, that enable
characterization of their molecular fingerprints, which are
the sets of genes expressed in a homogenous population of

cells (Arendt, 2003). Comparing the molecular fingerprint
of distinct cell types has yielded insight into evolutionary
relationships among remote animal clades (Arendt, 2005, 2008;
Eames et al., 2012). A few technologies can generate molecular
fingerprints, but of these, RNAseq currently produces the most
robust, unbiased results (Necsulea and Kaessmann, 2014). Some
advantages of RNA-seq include a higher dynamic range, allowing
the detection of transcripts that are expressed at very high or
low levels, and the ability to detect novel genes and alternative
splice variants in samples from any animal (Wang et al., 2009).
Important for evolutionary studies, then, RNAseq allows for an
accurate comparison of molecular fingerprints in both closely
and distantly related species (Necsulea and Kaessmann, 2014;
Pantalacci and Semon, 2015).

Tracking gene expression patterns that underlie a homologous
trait through phylogeny provides unparalleled insight into
molecular mechanisms of evolution. In fact, comparative
transcriptomics might reveal that two tissues are homologous
(so-called “deep homology”; Shubin et al., 2009), despite
superficial histological or cellular differences. For example, the
presence of immature cartilage in a variety of invertebrate taxa
raises the possibility of a tissue with deep homology to cartilage
present in the ancestor to all metazoans (Figure 2B). Also,
identifying invertebrate tissues that express “bone genes” may
reveal deep homology of these cells to osteoblasts, potentially
facilitating the de novo appearance of the Runx2 GRN underlying
bone formation. Genes in the vertebrate Sparc family play a role
in skeletal matrix mineralization in vitro (Termine et al., 1981;
Pataquiva-Mateus et al., 2012). Although similar in vivo roles for
Sparc genes have not been demonstrated clearly (Roach, 1994;
Gilmour et al., 1998; Rotllant et al., 2008), comparative genomics
reveal a clear correlation between some Sparc genes and bone
formation (Kawasaki and Weiss, 2006; Martinek et al., 2007;
Koehler et al., 2009; Bertrand et al., 2013; Venkatesh et al., 2014).
Interestingly, Sparc genes are expressed in amphioxus, which
do not have bone nor mineralize their tissues (Bertrand et al.,
2013). If Runx2 co-opted regulation of these genes during the de
novo appearance of the osteoblast, then Sparc-expressing cells in
amphioxus may have deep homology to osteoblasts.

Comparative transcriptomics can be used to evaluate
quantitatively important features of GRN evolution, including
constraint and adaptation. Although Gould recently revived the
formalist pleas of Galton, Whitman, and others for constraint to
have a positive role during evolution (Gould, 2002), constraint
commonly is considered a restriction or limitation on the
evolutionary process (Arnold, 1992). Evidence of constraint can
be seenwhen transcriptomes are highly conserved among various
tissues or clades, presumably due to genomic, developmental, or
structural limitations. In addition to these constraints, a GRN
under stabilizing selection would not vary much with respect to
the genes expressed and their levels of expression, thus giving a
transcriptomic signal of constraint. In fact, the architecture of
GRN kernels, which usually consist of transcription factors and
other regulatory genes, can remain highly conserved for a long
period of time (Levine and Davidson, 2005; Davidson and Erwin,
2006). In contrast, adaptation commonly is considered positive
for change during evolution (Gould, 2002; Stayton, 2008; Losos,
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FIGURE 5 | Divergent vs. convergent evolution of the molecular
fingerprints of mature chondrocytes and osteoblasts. Venn Diagrams
comparing putative molecular fingerprints between mature chondrocytes and
osteoblasts in three distinct vertebrate clades may resolve among two
hypotheses for the origins of the osteoblast. (A) Divergent model. Osteoblast
evolved when a GRN was co-opted from mature chondrocytes. Differing
selective pressures on ancestors of various lineages, followed by
lineage-specific constraints, may have caused gradual divergence between
the GRN of osteoblasts and mature chondrocytes during vertebrate evolution.
If true, then the overlap between mature chondrocyte and osteoblast
molecular fingerprints will be significantly higher in earlier diverged lineages,
such as teleosts, than in later diverged lineages, such as mammals.
(B) Convergent model. Osteoblast GRN evolved de novo. Similar selective
pressures on osteoblasts and mature chondrocytes in ancestors of later
diverging lineages may have caused convergence between the GRN of
osteoblasts and mature chondrocytes during vertebrate evolution. If true, then
the overlap between molecular fingerprints of mature chondrocytes and
osteoblasts will be significantly lower in earlier evolved lineages. Branch
lengths in trees are arbitrary; the overlap between molecular fingerprints is
shown in green and, in the divergent model, may represent the ancestral GRN
kernel of both mature chondrocyte and osteoblast.

2011). Evidence of adaptation can be seen when transcriptomes
differ widely among various tissues or clades, presumably in
response to tissue- or clade-specific selective pressures. A GRN
under negative or positive selection would vary a lot in the genes
expressed and their levels of expression.

Comparative transcriptomics has unraveled the complexity
of several important developmental and evolutionary processes
in both invertebrate (Levin et al., 2012; McKenzie et al., 2014)
and vertebrate organisms (Chan et al., 2009; Brawand et al.,
2011). A major challenge in evolutionary biology is to explain
the appearance of novel traits and the GRNs underlying their
formation. Two different models have been proposed, with
only one currently receiving much experimental support. In the
first model, a GRN driving a novel trait also evolved de novo

(Figure 4A). For example, orphan genes, or genes without clear
family members, might be important drivers of evolutionary
novelty. First described in the yeast genome (Dujon, 1996), they
occur also inmany taxa, including rodents, primates, and humans
(Heinen et al., 2009; Toll-Riera et al., 2009a,b; Li et al., 2010).
Orphan genes might have appeared de novo from non-coding
sequences rather than from existing genes (Tautz and Domazet-
Loso, 2011). Subsequent interactions that these orphan genes
establish among other genes would create a novel GRN with the
capability of driving formation of a novel trait. This “de novo”
model has received little experimental support in metazoans,
but currently serves as the basis for the hypothesis that bone
(or dentine, if dentine appeared before bone during evolution)
evolved before mature cartilage (Figure 4A). In molecular terms,
the GRNdriving formation of the osteoblast would have appeared
de novo, presumably in a short evolutionary timeframe.

In the second model for appearance of evolutionary novelties,
which is increasingly supported by the literature, a novel trait
appears by co-opting a pre-existing GRN (Figure 4B; Fisher and
Franz-Odendaal, 2012; Achim and Arendt, 2014). For example,
comparative genomic studies on muscle cells, immune cells, and
neurons suggested that these cell types evolved by co-opting pre-
existing genetic systems (Achim and Arendt, 2014). In addition,
the appearance of a novel embryonic cell lineage in vertebrates,
the neural crest cell, has been argued to result from the co-option
of pre-existing GRNs that were employed by cells in the neural
tube, notochord, and pharynx in ancestral chordates (Baker and
Bronner-Fraser, 1997; Donoghue and Sansom, 2002; Meulemans
and Bronner-Fraser, 2005, 2007; McCauley and Bronner-Fraser,
2006; Zhang and Cohn, 2006). In fact, the neural crest-derived
vertebrate cartilaginous head skeleton might have arisen after
neural crest cells co-opted an ancestral chordate GRN that was
used for cartilage formation in other parts of the body (Jandzik
et al., 2015). Here, we use the same argument to support our
idea that the osteoblast appeared when a non-chondrogenic
mesenchymal cell co-opted expression of the mature cartilage
Runx2 GRN.

Comparative Transcriptomics and
Skeletal Tissue Evolution

How extensive is our understanding of the GRNs driving cartilage
and bone formation? As outlined above, Sox9 and Runx2 GRNs
are critical in a variety of vertebrates, but is this the whole
story? Few studies have analyzed the molecular fingerprint of
the chondrocyte and osteoblast using unbiased transcriptomics,
but such experiments may identify unknown GRN’s driving
formation of these cell types. The chondrocyte molecular
fingerprint was estimated by compiling data from the literature
and summarizing their interactions into a GRN (Cole, 2011).
Recently, transcriptomics on Sox9 and Runx2 loss-of-function
skeletal cells in vitro have shed light on Sox9 and Runx2 GRNs
that are relevant to chondrocyte and osteoblast differentiation
(Oh et al., 2014; Wu et al., 2014). A promising future
direction is to use transcriptomics to define these GRNs in vivo
using Sox9 and Runx2 loss-of-function animals. Comparative
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FIGURE 6 | Differing models for levels of constraint and adaptation among skeletal cells of different vertebrate lineages. Venn diagrams comparing
putative molecular fingerprints of chondrocytes and osteoblasts from three vertebrate clades. The ancestral chondrocyte and osteoblast GRN kernels are
represented in the overlap of the circles. More overlap represents more constraint/less adaptation among clades. (A) The first scenario predicts that the molecular
fingerprints of the chondrocyte and osteoblast (and thus the GRNs governing their formation) are constrained to equal extents among vertebrates (Fisher and
Franz-Odendaal, 2012; Vieira et al., 2013). (B) The second scenario predicts that the chondrocyte molecular fingerprint is more constrained among vertebrate
clades, while the osteoblast molecular fingerprint shows more signs of clade-specific adaptations (Eames et al., 2012). In general, this latter scenario posits that a
cell type appearing later during animal phylogeny is more free to vary than a cell type appearing earlier, whose molecular fingerprint was fixed via stabilizing selection.

transcriptomics between vertebrae and gill arch skeletal elements
of a teleost demonstrated a high degree of overlap in gene
expression between these two tissues (Vieira et al., 2013), but
the presence of multiple cell types, including chondrocytes and
osteoblasts, in both samples confounds attribution of these data
to a particular cell type. Therefore, more specific techniques
should be used to isolate a pure population of cells in vivo in order
to accurately reveal and compare the molecular fingerprints of
different skeletal cell types (Figure 3).

Two related, fascinating questions remain for future research:
how did the GRNs directing skeletal cell differentiation appear,
and how did they evolve afterward? In this review, we
argue that gradual establishment of the Runx2 GRN during
evolution of the mature chondrocyte (subsequently co-opted
by a non-chondrogenic mesenchymal cell to form bone) is
more parsimonious than the de novo appearance of the Runx2
GRN in osteoblasts (Figure 4). Given the latter possibility,
however, the tremendous gene expression similarities between
mature cartilage and bone in tetrapods also may reflect co-
option of the Runx2 GRN by the mature chondrocyte after it was
established in the osteoblast. These possibilities predict divergent
vs. convergent evolution, respectively, of the Runx2 GRN in
mature chondrocytes after the appearance of the osteoblast.
Therefore, we propose an examination of skeletal cell molecular
fingerprints in a variety of vertebrates to resolve this issue.

Our divergent model predicts that the overlap between mature
chondrocyte and osteoblast molecular fingerprints will decrease
in more recently evolved organisms (Figure 5A). For example,
molecular fingerprints of mature chondrocytes and osteoblasts
would overlap more in earlier diverged lineages of vertebrates,
such as teleosts, than in later evolved lineages, such as amphibians
or mammals. On the other hand, the convergent model predicts
the opposite result (Figure 5B).

But do skeletal cell molecular fingerprints evolve in clade-
specific manners? A limited number of studies trying to
answer this question suggest two competing ideas. On the
one hand, molecular fingerprints of the chondrocyte and
the osteoblast have been proposed to be highly constrained
among various vertebrate clades (Figure 6A; Fisher and Franz-
Odendaal, 2012; Vieira et al., 2013). On the other hand, gene
expression comparisons between gar, zebrafish, chick, and mouse
suggest that the chondrocyte molecular fingerprint is constrained
among vertebrates, while the osteoblast molecular fingerprint
varied, perhaps in response to clade-specific selective pressures
(Figure 6B; Eames et al., 2012). Interestingly, generalizing these
results puts forward the hypothesis that earlier-evolved cell
types, in this case chondrocytes, might be more constrained
in their gene expression than cell types that appeared later,
such as osteoblasts, perhaps due to stabilizing selection over
geologic timescales. Comparative transcriptomics can quantitate
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constraint and adaptation, by measuring how transcript levels
vary among samples from different taxonomic lineages.

In the future, comparative transcriptomics will elucidate the
dynamics of skeletal cell type evolution, identifying lineage-
specific changes in gene expression, providing quantitative
measures of constraint and adaptation, and potentially
establishing deep homology of skeletal cells with previously
unappreciated cell types. Indeed, appropriate application of
comparative transcriptomics has the potential to revolutionize
understanding of the molecular mechanisms of trait evolution.

Summary

Given the role that fossilized bones played in devising early
evolutionary theory, skeletal tissue evolution has fascinated
scientists for centuries. In particular, the appearance of bone as
an evolutionary novelty demands explanation, which modern
molecular and embryological techniques address in ways never
imagined by studies of the fossil record alone. Here, we focus on
the three main skeletal tissues present in vertebrates (immature
cartilage, mature cartilage, and bone), and use findings from
both traditional and modern studies to argue that bone evolved
from mature cartilage. Standing in contrast to the available
fossil record, which suggests that bone appeared prior to
mature cartilage, this hypothesis posits that a GRN driving
traits such as matrix mineralization in mature cartilage was
co-opted by non-chondrogenic mesenchymal cells to produce
bone. Alternatively, the GRN driving bone formation may

have evolved first and subsequently was co-opted by mature
cartilage, but we use an argument based on parsimony that this
scenario would be more complicated to achieve. Comparing
the molecular fingerprints of skeletal tissues in agnathans
and sister chordate species with those in vertebrates might
resolve among these possibilities. In addition to comparative
transcriptomics revealing the origins of evolutionary novelties,
tracking molecular fingerprints of skeletal cells in various
vertebrate lineages can identify quantitative measures of
constraint and adaptation within the GRNs that govern the
formation of skeletal tissues. Therefore, we strongly believe that
this novel approach may revolutionize understanding of the
evolution of cartilage and bone and more generally provide
a modern paradigm for molecular genetic changes during the
evolutionary process.
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